Quasi-Planar Graphs Have a Linear Number of Edges
نویسندگان
چکیده
A graph is called quasi-planar if it can be drawn in the plane so that no three of its edges are pairwise crossing. It is shown that the maximum number of edges of a quasi-planar graph with n vertices is O(n).
منابع مشابه
On the maximum number of edges in quasi-planar graphs
A topological graph is quasi-planar, if it does not contain three pairwise crossing edges. Agarwal et al. [2] proved that these graphs have a linear number of edges. We give a simple proof for this fact that yields the better upper bound of 8n edges for n vertices. Our best construction with 7n−O(1) edges comes very close to this bound. Moreover, we show matching upper and lower bounds for seve...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملBeyond Outerplanarity
We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer k-planar graphs, where each edge is crossed by at most k other edges; and, outer k-quasi-planar graphs where no k edges can mutually cross. We show that the outer k-planar graphs are (b √ 4k + 1...
متن کاملh-Quasi Planar Drawings of Bounded Treewidth Graphs in Linear Area
We study the problem of computing h-quasi planar drawings in linear area; in an h-quasi planar drawing the number of mutually crossing edges is bounded by a constant h. We prove that every n-vertex partial k-tree admits a straight-line h-quasi planar drawing in O(n) area, where h depends on k but not on n. For specific sub-families of partial k-trees, we present ad-hoc algorithms that compute h...
متن کاملThe number of edges in k-quasi-planar graphs
A graph drawn in the plane is called k-quasi-planar if it does not contain k pairwise crossing edges. It has been conjectured for a long time that for every fixed k, the maximum number of edges of a k-quasi-planar graph with n vertices is O(n). The best known upper bound is n(logn) . In the present note, we improve this bound to (n logn)2 c k (n) in the special case where the graph is drawn in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 17 شماره
صفحات -
تاریخ انتشار 1995